Cummins-ORNL\FEERC Emissions CRADA:

NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines,

Self-Diagnosing SmartCatalyst Systems

W.P. Partridge (PI), M.-Y. Kim, J.A. Pihl, C.S. Daw, J.-S. Choi Oak Ridge National Laboratory

N. Currier (PI), A. Yezerets, K. Kamasamudram, S. Joshi Cummins Inc.

Project ID: ACE032

Presenter: Bill Partridge partridgewp@ornl.gov

2015 DOE Vehicle Technologies Program
Annual Merit Review
June 11, 2015, Arlington, Virginia

U.S. DOE Program Management Team: Gurpreet Singh, Ken Howden, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Current SOW started FY13
- SOW extends through FY15
- New 3-year SOW submitted

<u>Budget</u>

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2013: \$400k
 - FY2014: \$350k
 - FY2015: \$283k

Barriers

- From DOE VT MYPP:
 - 2.3.1.B: Cost-effective emission control
 - 2.3.1.C: Modeling for emission control
 - 2.3.1.E: Emissions-control durability

Partners

- ORNL & Cummins Inc.
- CLEERS
- Chalmers
- Politecnico di Milano
- Queen's Univ. Belfast
- Univ. of Chem. & Tech. Prague

Objectives & Relevance

Improve Catalyst Models, Design & Control

for Enabling Emissions Compliance & Improved Fuel Economy

Objectives

- Develop diagnostics to advance applied & basic catalyst insights
- Understand impact of ageing on catalyst performance
 - Focus on distributed & transient performance
 - Correlate functional impacts: SCR, NH₃ capacity & oxidation reactions
- Identify strategies for catalyst-state assessment
- Apply data to improve & critically assess catalyst models

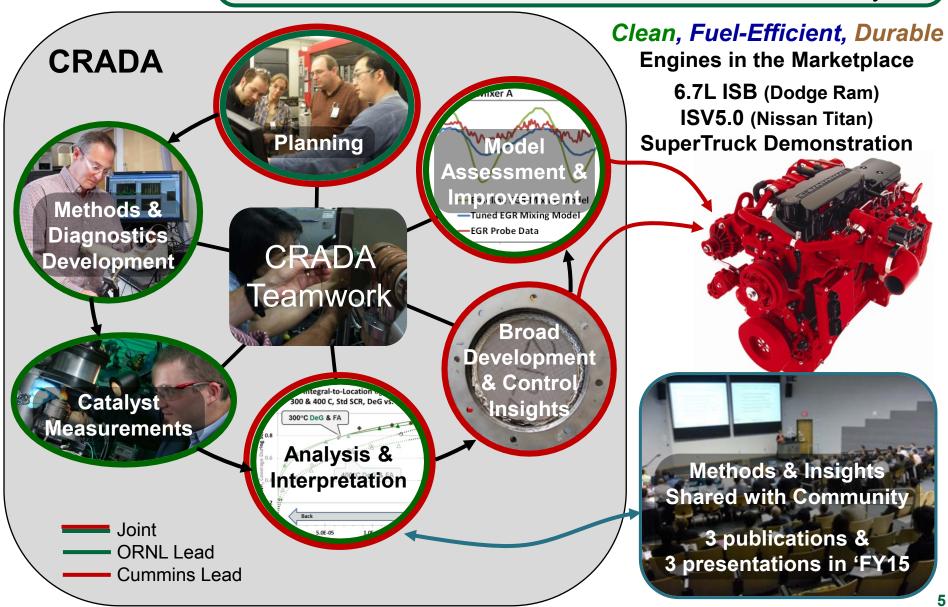
Relevance – Detailed Catalyst Insights impact:

- Improve dynamic catalyst models
- Improve control strategies & design model-based controls
- Optimize NH₃ dosing control for fuel economy and overall fluid economy
- Reduce required engineering margins (engine-efficiency vs. emissions tradeoffs)
- Reduce system capital & operation costs

Milestones

2014 Milestones:

- ✓ Q1: Complete assessment of probe-to-probe variations in NH₃ sensors
- ✓ Q2: Assess NH₃ capacity of Lab-Aged 2010CMI sample
- ✓ Q3: Assess distributed performance of Lab-Aged 2010CMI sample
- ✓ Q4: Compare distributed performance of DeGreened & Lab-Aged 2010CMI


2015 Milestone (on schedule for timely completion):

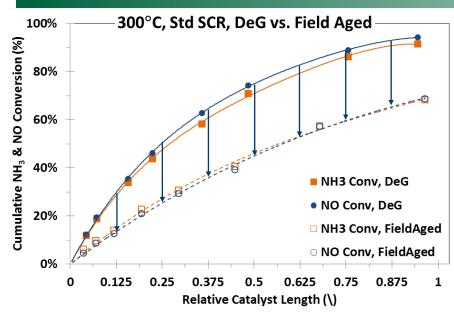
- ✓ Q2: Assess distributed performance of Field-Aged commercial SCR catalyst
 - Q3: Present CRADA ageing insights at CLEERS Workshop

Approach

Spatiotemporal Intra-Catalyst Characterization

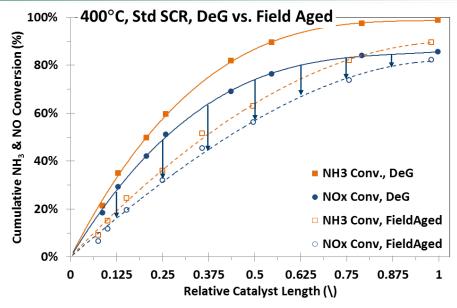
for Fundamental & Practical Insights to Enhance Performance, Control, Cost & Durability

Technical Progress: Summary

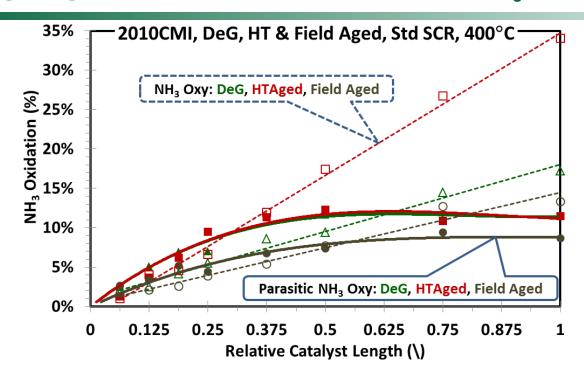

• Background: from FY12 & 14 Project Years (responding to Reviewer Feedback)

- Commercial & Model Cu-SCR catalysts investigated with multiple collaborators
- Distributed Capacity dictated by Adsorption Isotherm & Local [NH₃]
- SCR kinetic parameters determined from intra-SCR distributed data
 - under normal operating conditions & distributed model published (with Chalmers)
- Analytical SpaciMS development
 - Improved analysis, Fast SpaciMS & demonstrated non-invasive Spaci nature
- Multiple University collaborations: Chalmers, UCT Prague, PoliMi, QUB, MI Tech

FY15 work focused on a Field Aged Commercial 2010CMI SCR

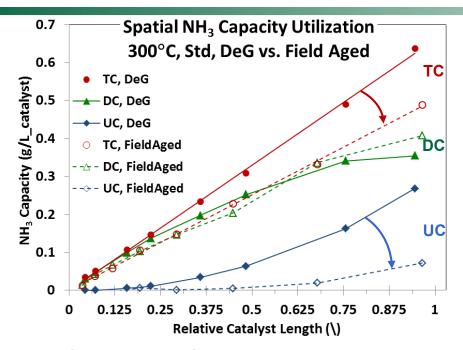

- Distributed performance: NO & NH₃ conversion, NH₃ oxidation & capacity
- Objective: understand how Field Ageing impacts catalyst functions & performance
- Correlate functional impacts of Field Ageing relative to DeGreened performance
 - DeGreened sample: DeG
 - Hydrothermally Aged sample: HTA
 - Field Aged sample: FA
- Assess catalyst models against spatially resolved data
- Gain insights regarding catalyst-state assessment

Tech.Prog.: Field Ageing Significantly Reduces SCR Conversion


- 2010CMI, Cu-SAPO-34
- Field Ageing
 - Sample from real-world use
 - Normal ageing profile
- Previous work focused on DeG & HTA

- Major SCR degradation in front half
 - ~40-55% lower conversion at 300°C
 - ~20-40% lower conversion at 400°C
- Parasitic NH₃ Oxidation
 - negligible at 300°C
 - apparent at 400°C for both DeG & FA

Identify Specific Parameters Impacting SCR Loss with Field Ageing, Focus on Parameter-Performance Correlations & Model Comparisons


Field Ageing Reduces both Parasitic & NH₃ Oxidation

- Parasitic NH₃ Oxidation: PO (during SCR)
 - FA ~20% lower than DeG
 - Reduced competition should cause greater SCR conversion if PO limits SCR
 - HTA ~same as DeG
- NH₃ Oxidation (in absence of NO_x)
 - FA ~20% lower than DeG
 - HTA ~100% greater than DeG

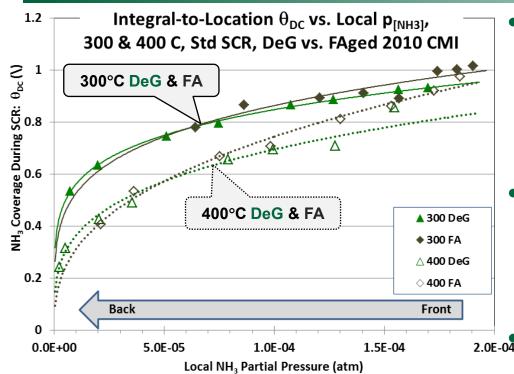
- FA & HTA have different impacts
- FA SCR loss >> PO loss
 - Significant PO change would cause opposite SCR trend
- FA reduces both SCR & PO
 - FA apparently impacts a common site
 - SCR is more sensitive to this impact
 - PO site competition not limiting SCR

Tech.Prog.: Field Ageing Changes TC & UC, but Little DC Impact

Total NH₃ Capacity: **TC**

Dynamic NH₃ Capacity: **DC**

DC: fraction used during SCR


Unused NH₃ Capacity: UC

DC + UC = TC

- Total NH₃ Capacity: TC
 - FA TC~25% lower at both 300 & 400°C
- Dynamic NH₃ Capacity: DC
 - DC≈TC at catalyst front
 - FA causes DC≈TC deeper into catalyst
 - DC saturated deeper into catalyst
 - Overall very small DC change
 - [NH₃] similar at DC-TC separation point
 - Suggests similar Adsorption Isotherm

- Unused NH₃ Capacity: UC
 - FA lowers UC (Due to TC & DC behavior)
 - May impact dosing control
 - Candidate for catalyst-state monitor
- Same general behavior at 400°C
- FA has little impact on DC quantity
- FA SCR loss >> DC change
 - Apparently not due to DC quantity loss
 - But, is FA DC less accessible?

Tech.Prog.: Field Ageing Does Not Change NH₃ Adsorption Energetics

Pihl & Daw CLEERS data from Commercial SSZ-13 SCR (see ACE022, Pihl, Wednesday 4:15pm)

100
80
0.02
0.02
0.04
0.06
0.08
0.04
0.00
NH₃ inventory (mol/l)
NH₃ concentration (ppm)

- NH₃ Isotherm from SpaciMS data
 - Normalized coverage shown
 - Under SCR reaction conditions
 - Adsorption is much faster than even Fast SCR (previously shown)
- Shape is like 2-site Langmuir
 - See Pihl & Daw CLEERS data
 - From commercial SSZ-13 SCR
 - Distinct knee at low NH₃ partial pressure

Isotherm is same at a give temperature

- Shape would change with energetics
 - e.g., if selective adsorption-site impact
- Isotherm flattens at higher temperature
 - Typical nature for Langmuir isotherm
- Simplifies modeling of aged samples
 - Field ageing reduces number of sites
 - But adsorption occurs in same way
 - Use same model with scaling factor

Tech.Prog.: Summary of Field-Ageing Impacts on SCR Functions

Function	Field-Ageing Impact vs. DeGreened	
	300°C	400°C
SCR	40-55% lower	20-40% lower
Parasitic NH ₃ Oxidation	NA; same	20% lower (opposite trend)
NH ₃ Oxidation	NA; same	20% lower
NH ₃ Inhibition limit	same	same
Total NH ₃ Capacity	25% lower	25% lower
Dynamic NH ₃ Capacity	ca. same	ca. same
Unused NH ₃ Capacity	lower	lower
NH ₃ Adsorption Energetics	same	same

- Results generally consistent with
 - FA reduces TC & impacts common site related to SCR & PO
 - Practically nonselective FA impact on NH₃ adsorption-site energetics
 - DC quantity and PO competition not limiting FA SCR
 - FA may make DC less accessible, causing longer\slower SCR
- Additional catalyst characterization needed
 - Cu sintering
 - Poisoning; e.g., by lube components (S, Zn, P, Ca)
 - Number & nature of surface sites
- Comparison to Cummins catalyst models is ongoing

Responses to 2014 Review Comments FY2014 AMR Review (7 Reviewers; max score: 4)

Numerous Positive Comments:

- "excellent rating," "thought-out approach," "very important project"
- "very interesting," "good work characterizing various functions"
- "outstanding collaboration," "excellent group of collaboration partners"
- "characterization of axial changes in NH₃ storage is important"
- "development & comparison to ageing models is important"
- "OBD is a major challenge and this work can shed light on this"

(1 Horiottoro) max coordi i)		
Category	Score	
Approach	3.50	
Tech Progress	3.07	
Collaboration	3.50	
Future Research	3.21	
Weighted Average	3.25	

Recommendations:

- Some question re. how intra-SCR spatially resolved information can be used in practice
 - Spaci-like analysis provides spatial insights re. functional activity and ageing impacts
 - These insights can guide strategies for practical on-vehicle OBD; even w/o spatially resolved sensing; e.g., see two slides in Technical Backup Slides
- Some questions re. sufficiency of results given that project started in 2013
 - The AMR presentation focuses on the previous year
 - A more detailed multi-year summary has been provided in the Technical Backup Slides
- Several comments re. Cummins' contribution & benefits, and contributions of the informal collaborators
 - This has been highlighted in the presentation
 - A summary of contributions is provided in the Technical Backup Slides
- · Several comments re. formalizing the non-CRADA collaborators & more in-depth discussion of their work
 - The CRADA partners bring knowledge from wide-ranging sources to the project
 - The informal partnerships strengthen the project w/o being exposed to CRADA-protected info.
 - CRADA is a formal CMI-ORNL agreement; the AMR primarily focuses on CRADA-partner work
- Several suggestions that transient analysis be used to probe spatiotemporal functional interactions
 - This was discussed last year, and is being incorporated in the Future Work Plans

Collaborations & Coordination with Other Institutions

Cummins

- CRADA Partner, Neal Currier (Co-PI)
- CLEERS (ACE022, Pihl, Wednesday 4:15pm)
 - Diagnostics, analysis & modeling coordination

- Kinetic modeling of NH₃-SCR
- Xavier Auvray, et al. (2015), Applied Catalysis B: Environmental 163, 393-403.

- Mechanistic SCR studies (with CLEERS)
- Maria Pia Ruggeri, et al. 8th ICEC, 2014.

- Minimally invasive nature of SpaciMS
- Alexandre Goguet, et al. (2014). Catalysis Today 236, 206-208.
- UCT, Prague (Prof. Marek & Dr. Kočí)
 - N₂O formation studies (with CLEERS)
 - David Mráček, et al. (2015). Appl. Catalysis B: Env. 166-167, 509-517.
 - David Mráček, et al. 2014 CLEERS Workshop.
 - Petr Kočí, et al. 8th ICEC, 2014.

Publications, Presentations & Recognition

- 3 Archival Journal Publication, 3 Presentations
- ORNL-Cummins partnership recognized by Dr. Danielson, DOE EERE Assistant Secretary, for enabling clean & efficient engines for current & future vehicles

Remaining Challenges & Barriers, and Proposed Future Work

Remaining Challenges:	Future Work (FY16-18):
 Robust SCR models that can accurately predict transient distributed performance Most critical assessment method 	 Compare CMI models to measurements Individual function & integrated performance Initial focus on NH₃ capacity & isotherm Mutual guidance: models ↔ experiments
Origin of Field Ageing performance loss	 Catalyst characterization Sintering, poisoning, deAl, zeolite structure Compare models and experiments
 Analytical improvements Impacts capacity & transient analysis 	 Differentiating transient impacts of instrument response and dynamic catalyst changes e.g., dynamic catalyst oxidation-state changes
Transient catalyst performance	 Transient response experiments Spatial & temporal resolution How functions transitions between SS states Model assessment Analysis for catalyst-state assessment
 Other Field-Ageing impacts and catalysts Are existing insights broadly representative 	 Measurements of other FAged samples Measurements of other catalyst samples With different functional & parameter sensitivities

Summary

Relevance

- CRADA work enables improved catalyst knowledge, models, design & control
- This reduces catalyst system costs & required engine-efficiency tradeoffs
- This in turn enables DOE goals for improved fuel economy

Approach

- Develop & apply diagnostics to characterize catalyst nature
- Analyze data to understand mechanistic details of catalyst functions & ageing impacts
- Develop improved catalyst models based on improved catalyst knowledge

Technical Accomplishments

- Assessed impacts of Field Ageing on commercial SCR catalyst functions
 - NH₃ capacity, SCR, Parasitic NH₃ oxidation, NH₃ Oxidation, Dynamic Inhibition
 - Field Ageing does not change NH₃ energetics; i.e., can use same isotherm model

Collaborations

- Numerous university collaborations resulting in presentations, publications and advances
- Coordination & collaboration with other DOE projects to maximize benefit

Future Work

- Apply data & insights to improve catalyst models & catalyst-state assessment
- Experiments to understand transient catalyst performance
- Analysis of broader field-aged sample set and catalyst types

Technical Back-Up Slides

Overview (with more Barriers details)

Timeline

- New SOW started FY13
- SOW extends through FY15
- New 3-year SOW & goals extension submitted

Budget

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2013: \$400k
 - FY2014: \$350k
 - FY2015: \$283k

Barriers

- From DOE VT MYPP:
 - 2.3.1.B: Cost-effective emission control
 - 2.3.1.C: Modeling for emission control
 - 2.3.1.E: Emissions-control durability
- General
 - Emissions controls
 - Catalyst fundamentals & practical insights
 - Catalyst models (design tools & imbedded)
 - Control strategies & OBD
 - Combustion Efficiency
 - Shift emissions tradeoff to fuel efficiency
 - Durability
 - Enhanced durability via improved controls
 - Cost
 - Lower development, catalyst & sensor costs

Partners

- ORNL & Cummins Inc.
- CLEERS & University collaborators

Technical Progress: Summary (details re. FY12-14 Project Years)

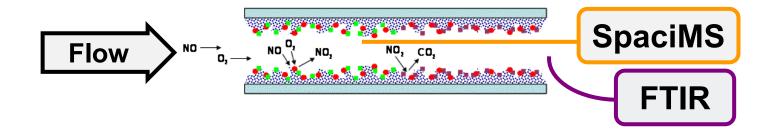
Background: from FY12 & 14 Project Years

- Multiple SCR catalysts investigated
 - Commercial Cu-SAPO-34; SpaciMS & SpaciIR (with CLEERS & MI Tech)
 - Distributed capacity & SS performance in DeG & HTAged states
 - Model Cu-Beta; (with Chalmers)
- Distributed Capacity dictated by Adsorption Isotherm & Local [NH₃]
 - SCR reaction only changes [NH₃] distribution & not isotherm
 - Adsorption equilibrium faster than even Fast SCR
 - Formulation will change isotherm
 - Additional isotherm work ongoing in CLEERS
- SCR kinetic parameters determined from intra-SCR distributed data
 - under normal operating conditions & distributed model published (with Chalmers)
- Analytical SpaciMS development
 - Improved analysis, Fast SpaciMS & demonstrated non-invasive Spaci nature
- Multiple University partnerships: UCT Prague, PoliMi, Chalmers

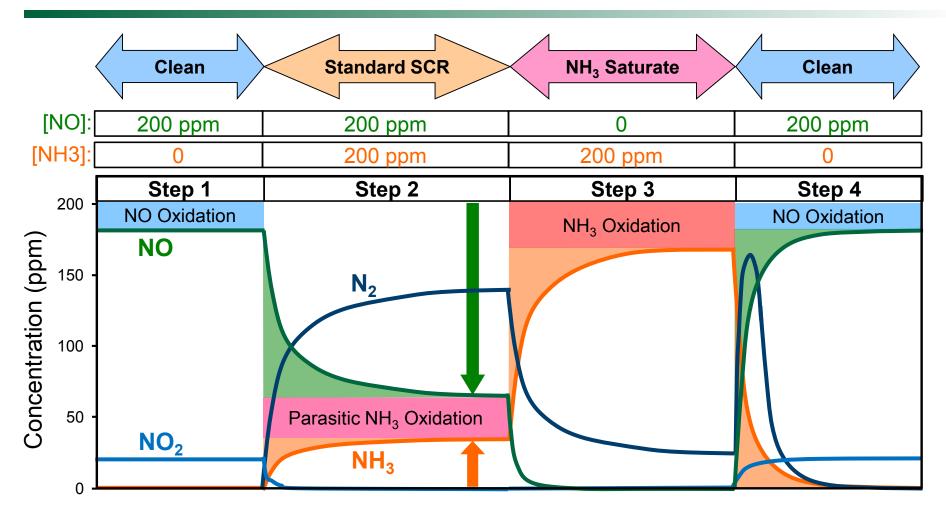
FY15 work focused on a Field Aged 2010 CMI SCR

- Distributed performance: NO & NH₃ conversion, PO & NH₃ oxidation, capacity
- Objective: understand how Field Ageing impacts catalyst functions & performance
- Apply to assess catalyst models and gain insights re. state assessment

Technical Progress: Summary of Participant Actions

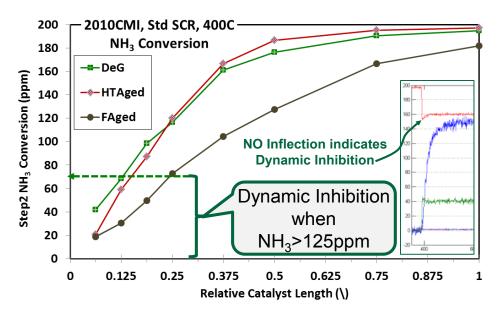

Summary of FY15 CRADA Participant Contributions

- Responding to AMR Reviewer feedback
- 1:1 DOE:Cummins cost share; i.e., Cummins matches DOE investment 1:1
- Supply fresh, HTAged and Field Aged catalsyt samples (CMI lead)
- Bench reactor analysis of catalyst samples (ORNL lead)
- Analysis of SpaciMS and other reactor data (ORNL lead)
- Interpretation of results (Joint ORNL & CMI)
 - Basic insights; limiting conditions, surface chemistry, correlations
 - Practical insights; strategies for catalyst-state assessment
- Model comparison, assessment and modifications (CMI lead)
- Next-steps and future-work planning (Joint ORNL & CMI)
- Informal partnerships outside the CRADA FY13-15
 - Lead participant is indicated parenthetically
 - SCR kinetic analysis & modeling with Chalmers
 - Planning (Joint), diagnostics & analysis (ORNL), experiments at ORNL (Joint), modeling (Chalmers)
 - Mechanistic studies with Politecnico di Milano
 - Planning (Joint), diagnostics & analysis (ORNL), experiments at ORNL (Joint), interpretation (Joint)
 - N2O formation studies with University of Chemistry and Technology, Prague
 - Planning (Joint), diagnostics & analysis (ORNL), experiments at ORNL (Joint), modeling (UCTP)
 - SpaciMS studies with Queen's University, Belfast
 - Planning (Joint), diagnostics & analysis (joint), experiments at ORNL (ORNL), modeling (QUB)


Experimental: Catalyst, Conditions, Methods & Approach

	Commercial
Catalyst	2010 CMI, Cu-SAPO 34
Mini-Core size	21 cells; ca. 2.45-cm long x 0.78 wide
Channel density	300 cpsi
Space Velocity	60,000 hr ⁻¹
NH ₃ , NO _x	200ppm, 200ppm
Base O ₂ & H ₂ O	10% & 5%
Temperatures	200, 300 & 400°C
Standard SCR	√ focus of these slides
Fast SCR	✓
Diagnostic	SpaciMS & FTIR

State	Conditions
DeGreened	700°C , 4hrs, $10\%\text{O}_2 + 5\%\text{H}_2\text{O}$; • From front of sample B11-22
Hydrothermal Ageing	800°C, 50hrs, 14%O ₂ + 8%H ₂ O; • CMI ageing rig: 10-9-2013 • From front of sample B11-23
Field Ageing	 ?; prepared by CMI; CMI date: 7-1-2014 From front of larger sample; Pretreatment at ORNL: 500°C to remove HC & S Cycling at 200, 300 & 400C to steady state


Cummins 4-Step Protocol Resolves Reaction Parameters

- Step1: NO oxidation
- Step2: SS NO_x & NH₃ conversions, Parasitic NH₃ oxidation, Dynamic NH₃ capacity
- Step3: NO_x-free NH₃ oxidation, Unused NH₃ capacity
- Step4: NO oxidation, Total NH₃ capacity

Total = Dynamic + Unused

Tech.Prog.: Field Ageing Does Not Change Dynamic NH₃ Inhibition

- Dynamic inhibition at SCR start
 - Observed in catalyst front for all samples
 - Observed above consistent [NH₃] limit
 - \gtrsim 165ppm [NH₃] at 300°C
 - \gtrsim 125ppm [NH₃] at 400°C
 - 400°C more sensitive
 - Due to faster reaction or less accessible DC?
 - More sensitive to spillover from Higher-E S2 sites, which are more dominant at high-T
 - Impacts NO & NH₃ adsorption parameters

Tronconi, Cat. Today 105, p529; describes dynamic inhibition

- 'modified redox (MR) SCR rate law'
- Depends on T, C_{NO}, θ_{NH3} & C_{O2}

$$r_{\text{NO}} = \frac{k'_{\text{NO}} O' \exp\left(-\frac{E_{\text{NO}}}{RT}\right) C_{\text{NO}} \theta_{\text{NH}_3}}{1 + k'_{\text{NH}_3} \frac{\theta_{\text{NH}_3}}{1 - \theta_{\text{NH}_3}}} \left(\frac{p_{\text{O}_2}}{0.02}\right)^{\beta}$$
(12)

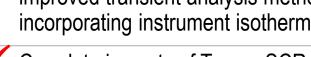
- r_{NO}: rate of DeNOx reaction
- E_{NO}: Activation energy for DeNOx reaction
- C_{NO}: gas phase concentration of NO
- θ_{NH3}: surface coverage of NH₃
- k_{NO}: pre-exponential factor for DeNOx reaction rate constant
- K_{NH3}: NH₃ rate parameter
- p_{O2}: O₂ partial pressure
- S1: redox site for O₂ & NO adsorption/activation
- S2: acidic site for NH₃ adsorption
- Suggests inhibiting NH₃ & NO interactions not impacted by FA
 - Abundance of S2 vs S1 sites
 - i.e., NH₃ spillover from S2 to S1 is equivalent in DG & FA; even with lower FA TC
 - Consistent with lower NH₃ vs. NO capacity
 - Consistent with separate S1 & S2 sites
 - Can lose many S2 sites before change in NO-adsorption inhibition occurs
 - FA selectively impacts S2 sites over S1?

Remaining Challenges & Barriers, and Proposed Future Work

Remaining Challenges:

Characterize distributed impact of ageing on SCR-catalyst functions & performance

- Future Work (FY2015; i.e., from 2014 AMR):
- Study HydroThermally Lab-Aged sample
- Complete experimental matrix & analysis
 - DeG & HTAged 2010CMI SCR samples
 - Standard & Fast SCR
 - 200, 300 & 400°C

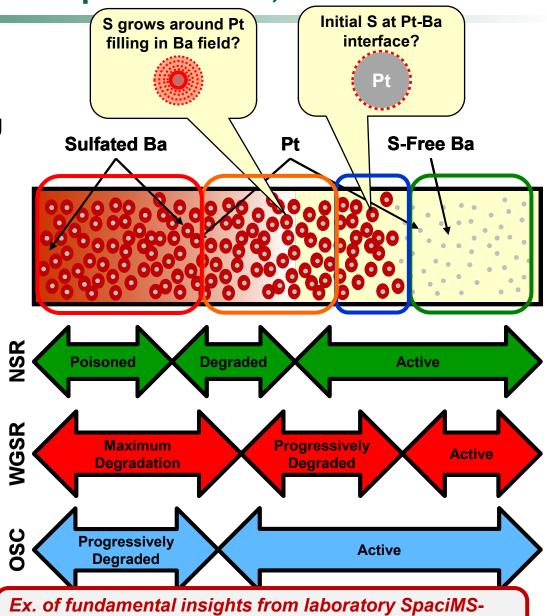

- Resolve NH₃ Capacity distributions via transient analysis
 - Resolve Dynamic-, Unused- & Total-Capacity
- Understand mechanisms of ageing-induced performance degradation
 - Mine insights for improving catalyst development models & control

- Determine capacity distributions using an improved transient analysis method incorporating instrument isotherms
 - Correlate impacts of Temp., SCR Reaction & Ageing on distribution of specific functions
 - E.g., further work as presented here
 - Comparison of measurements to SCR models
 - Assess model performance and sensitivity vs. specific parameters, ageing and functions

Similar studies on catalyst in other aged states

- Continue University collaborations
- Advance detailed understanding of ageing
 - Impacts of degree of ageing
 - Impacts of different real-world conditions

- Further HT Lab Ageing
- Field-aged 2010CMI catalyst samples



In process

Conceptual Model of Sulfur Impact on NSR, WGS & OSC

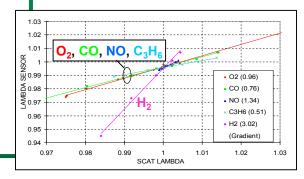
- Fully active in S-free zone
- WGS sensitive to initial S
- O₂ keeps Pt S free in fast cycling
- S-islands grow around Pt sites
 - Progressive WGS degradation
 - NSR insensitive to initial S
 - S-free Ba exists in field
 - Progressive NSR degradation
 - WGS degradation max
 - Field sulfation begins
- Field sulfation continues
 - NSR becomes poisoned
 - Progressive minor OSC loss
 - Due to minor Ba-peroxide?
- WGS S-front leads NSR S-front
 - No regeneration from WGS H₂

based studies; nxt. pg. shows how such fundamental

insights can be used to achieve practical OBD advances.

Ex. Practical OBD Based on Fundamental Catalyst Insights

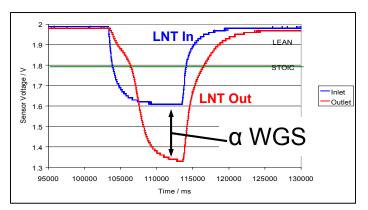
Need to minimize high-T DeS events


Basic control commands DeS too often and too long

WGS enables advanced control

- □ Cummins OBD Patent (US Patent App. 20080168824)
- Active on-board assessment of catalyst state
- Only DeS when & for as long as required
 - Better efficiency (lower fuel penalty)
 - Better durability (catalyst & engine last longer)

UEGO Sensors

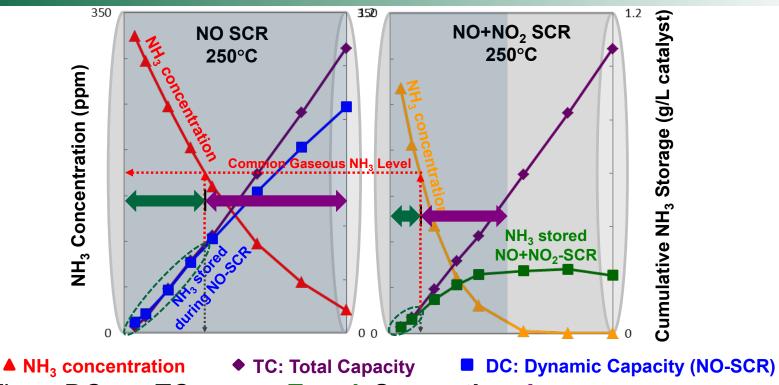

UEGO has unique H₂ cross sensitivity


LNT WGS a Ageing THC e 0.04 0.03 P80, 20s Cycle 0.04 = 0.02 0.03 8 0.02 ♀ 0.01 7 and 0.01 Parks, Swartz, Huff, West. ORNL. DEER 2006, August 20-24, 2006, Detroit, MI _ Turbo **Exhaust** Catalyst

Intake Air

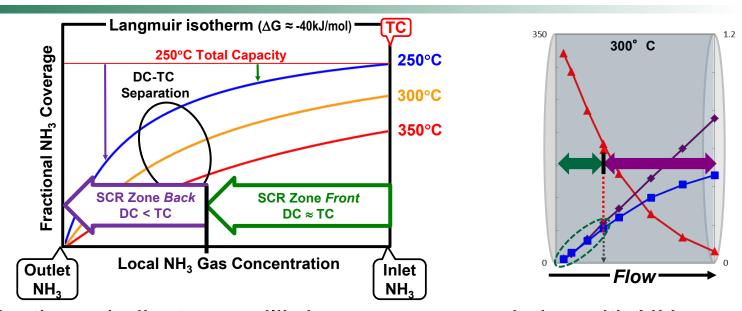
UEGO Signal α WGS

Tech.Prog.: Field Ageing Changes TC & UC, but Little DC Impact

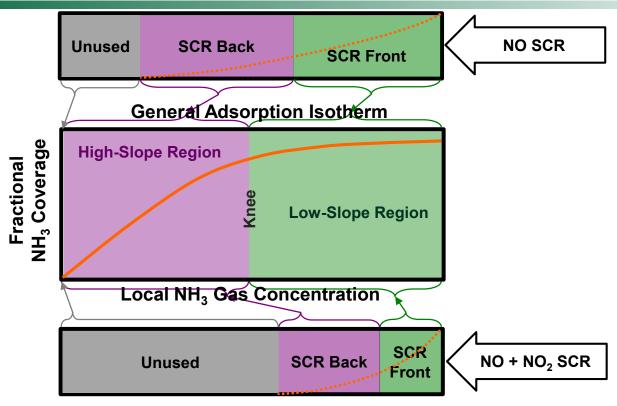


- Total NH₃ Capacity: TC
 - FA ~25% lower at both 300 & 400°C
- Dynamic NH₃ Capacity: DC
 - DC≈TC at catalyst front
 - FA causes DC≈TC deeper into catalyst
 - Due to TC pivoting down
 - DC saturated deeper into catalyst
 - [NH₃] similar at DC-TC separation point
 - Suggests similar Adsorption Isotherm

- Unused NH₃ Capacity: UC
 - FA lowers UC
 - Due to TC & DC behavior
 - May impact dosing control
- Same general behavior at 400°C
- Little impact of FAgeing on DC does not correlate with large SCR loss


DC + UC = TC

NH₃ Coverage Equilibrium is Faster than Even Fast SCR


- Three DC-vs.-TC zones: *Equal, Separation, Lower*
- DC ≈ TC in catalyst front section where NH₃ is high
- DC < TC in back of SCR zone
- DC ≈ TC above the same common ~175 ppm NH₃ level
 - A case where NO & NO+NO₂ SCR are similar!
 - NH₃ coverage equilibrium reactions much faster than NO+NO₂ SCR

Isotherm & Gas-Phase NH₃ Distribution Set NH₃ Coverage Distribution

- Adsorption isotherm indicates equilibrium-coverage variation with NH₃
 - TC measured at inlet NH₃
 - 3 major zones: low-slope, knee & high-slope
- Coverage variation is relatively flat in low-slope (high-NH₃) zone
 - practically: DC ≈ TC here
- DC & TC should separate around the isotherm knee NH₃ concentration
- DC<TC in high-slope zone corresponding to SCR-zone back
 - local NH₃ & coverage going to zero here
- Specific SCR reaction does not change the isotherm
 - only changes where these zones occur spatially within the catalyst

Major Isotherm Zones can Move within the Catalyst

- Specific SCR Reaction, SV, etc. can change the NH₃ distribution
 - Spatial applicability of different isotherm zones (low-slope, knee & high-slope)
- Isotherm & local NH₃ determine the local coverage
- But local NH₃ is also dependent on local coverage
 - Rate coefficient & coverage are both temperature dependent
 - Creates complex distributed behavior
- Actual catalysts can have more complex adsorption-isotherm shape
 - Further complicating distributed performance, temperature dependence, etc.